9 research outputs found

    Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery

    Get PDF
    Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line height (ELH) and dark-object subtraction (DOS) methods were used for atmospheric correction. DOS left residual brightness in the blue and green bands but had minimal impact on the seagrass classification accuracy. However, the brighter reflectance values reduced LAI retrievals by up to 50% compared to ELH-corrected images and ground-based observations. This study offers a potential correction for LAI underestimation due to incomplete atmospheric correction, enhancing the retrieval of seagrass density and above-ground Blue Carbon from WorldView-2 imagery without in situ observations for accurate atmospheric interference correction

    Performance Across Worldview-2 and RapidEye for Reproducible Seagrass Mapping

    Get PDF
    Satellite remote sensing offers an effective remedy to challenges in ground-based and aerial mapping that have previously impeded quantitative assessments of global seagrass extent. Commercial satellite platforms offer fine spatial resolution, an important consideration in patchy seagrass ecosystems. Currently, no consistent protocol exists for image processing of commercial data, limiting reproducibility and comparison across space and time. Additionally, the radiometric performance of commercial satellite sensors has not been assessed against the dark and variable targets characteristic of coastal waters. This study compared data products derived from two commercial satellites: DigitalGlobe\u27s WorldView-2 and Planet\u27s RapidEye. A single scene from each platform was obtained at St. Joseph Bay in Florida, USA, corresponding to a November 2010 field campaign. A reproducible processing regime was developed to transform imagery from basic products, as delivered from each company, into analysis-ready data usable for various scientific applications. Satellite-derived surface reflectances were compared against field measurements. WorldView-2 imagery exhibited high disagreement in the coastal blue and blue spectral bands, chronically overpredicting. RapidEye exhibited better agreement than WorldView-2, but overpredicted slightly across all spectral bands. A deep convolutional neural network was used to classify imagery into deep water, land, submerged sand, seagrass, and intertidal classes. Classification results were compared to seagrass maps derived from photointerpreted aerial imagery. This study offers the first radiometric assessment of WorldView-2 and RapidEye over a coastal system, revealing inherent calibration issues in shorter wavelengths of WorldView-2. Both platforms demonstrated as much as 97% agreement with aerial estimates, despite differing resolutions. Thus, calibration issues in WorldView-2 did not appear to interfere with classification accuracy, but could be problematic if estimating biomass. The image processing routine developed here offers a reproducible workflow for WorldView-2 and RapidEye imagery, which was tested in two additional coastal systems. This approach may become platform independent as more sensors become available

    Vertical Artifacts in High-Resolution WorldView-2 and Worldview-3 Satellite Imagery of Aquatic Systems

    Get PDF
    Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for an aquatic target as WorldView-3 was primarily designed as a land sensor. At-sensor radiance measured by six of WorldView-3ʻs eight spectral bands exhibited banding, more specifically referred to as non-uniformity, at a width corresponding to the multispectral detector sub-arrays that comprise the WorldView-3 focal plane. At-sensor radiance measured by the remaining two spectral bands, red and near-infrared (NIR) #1, exhibited striping. Striping in these spectral bands can be attributed to their time delay integration (TDI) settings at the time of image acquisition, which were optimized for land. The impact of vertical striping on a spectral index leveraging the red, red edge, and NIR spectral bands—referred to here as the NIR maximum chlorophyll index (MCINIR)—was investigated. Temporally similar imagery from the European Space Agencyʻs Sentinel-3 and Sentinel-2 satellites were used as baseline references of expected chlorophyll values across Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 imagery showed striping. Striping was highly prominent in the MCINIR product generated using WorldView-3 imagery, as noise in the at-sensor radiance exceeded any signal of chlorophyll in the image. Adjusting the image acquisition parameters for future tasking of WorldView-3 or the functionally similar WorldView-2 satellite may alleviate these artefacts. To test this, an additional WorldView-3 image was acquired at Lake Okeechobee, FL, on 26 May 2021 in which the TDI settings and scan line rate were adjusted to improve the signal-to-noise ratio. While some evidence of non-uniformity remained, striping was no longer noticeable in the MCINIR product. Future image tasking over aquatic targets should employ these updated image acquisition parameters. Since the red and NIR #1 spectral bands are critical for inland and coastal water applications, archived images not collected using these updated settings may be limited in their potential for analysis of aquatic variables that require these two spectral bands to derive

    Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: A Semi-Automated Remote Sensing Analysis

    Get PDF
    Seagrasses are globally recognized for their contribution to blue carbon sequestration. However, accurate quantification of their carbon storage capacity remains uncertain due, in part, to an incomplete inventory of global seagrass extent and assessment of its temporal variability. Furthermore, seagrasses are undergoing significant decline globally, which highlights the urgent need to develop change detection techniques applicable to both the scale of loss and the spatial complexity of coastal environments. This study applied a deep learning algorithm to a 30-year time series of Landsat 5 through 8 imagery to quantify seagrass extent, leaf area index (LAI), and belowground organic carbon (BGC) in St. Joseph Bay, Florida, between 1990 and 2020. Consistent with previous field-based observations regarding stability of seagrass extent throughout St. Joseph Bay, there was no temporal trend in seagrass extent (23 ± 3 km2, τ = 0.09, p = 0.59, n = 31), LAI (1.6 ± 0.2, τ = -0.13, p = 0.42, n = 31), or BGC (165 ± 19 g C m−2, τ = - 0.01, p = 0.1, n = 31) over the 30-year study period. There were, however, six brief declines in seagrass extent between the years 2004 and 2019 following tropical cyclones, from which seagrasses recovered rapidly. Fine-scale interannual variability in seagrass extent, LAI, and BGC was unrelated to sea surface temperature or to climate variability associated with the El Niño-Southern Oscillation or the North Atlantic Oscillation. Although our temporal assessment showed that seagrass and its belowground carbon were stable in St. Joseph Bay from 1990 to 2020, forecasts suggest that environmental and climate pressures are ongoing, which highlights the importance of the method and time series presented here as a valuable tool to quantify decadal-scale variability in seagrass dynamics. Perhaps more importantly, our results can serve as a baseline against which we can monitor future change in seagrass communities and their blue carbon

    Merging of the Case 2 Regional Coast Colour and Maximum-Peak Height chlorophyll-a algorithms: validation and demonstration of satellite-derived retrievals across US lakes

    Get PDF
    Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll-a (chl-a, µg L−1) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl-a with in-water algorithms. Validation of chl-a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl-a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH(P)) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl-a data. The best performance based on mean absolute multiplicative error (MAEmult) was demonstrated by the merged algorithm referred to as C15−M10 (MAEmult = 1.8, biasmult = 0.97, n = 836). In the C15−M10 algorithm, the MPH(P) chl-a value was retained if it was > 10 µg L−1; if the MPH(P) value was ≤ 10 µg L−1, the C2RCC value was selected, as long as that value was  <  15 µg L−1. Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl-a algorithms previously reported independently. Additionally, it contributes to the transition of chl-a algorithm maturity by quantifying error statistics for a number of locations and times

    Simulated Response of St. Joseph Bay, Florida, Seagrass Meadows and Their Belowground Carbon to Anthropogenic and Climate Impacts

    Get PDF
    Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020. Model predictions were compared with satellite-derived measurements of seagrass extent and shoot density from the Landsat images for the same period. The GrassLight-derived area of potential seagrass habitat ranged from 36.2 km2 to 39.2 km2, averaging 38.0 ± 0.8 km2 compared to an observed seagrass extent of 23.0 ± 3.0 km2 derived from Landsat (range = 17.9–27.4 km2). GrassLight predicted a mean seagrass LAI of 2.7 m2 leaf m−2 seabed, compared to a mean LAI of 1.9 m2 m−2 estimated from Landsat, indicating that seagrass density in St. Joseph Bay may have been below its light-limited ecological potential. Climate and anthropogenic change simulations using GrassLight predicted the impact of changes in temperature, pH, chlorophyll a, chromophoric dissolved organic matter and turbidity on seagrass meadows. Simulations predicted a 2–8% decline in seagrass extent with rising temperatures that was offset by a 3–11% expansion in seagrass extent in response to ocean acidification when compared to present conditions. Simulations of water quality impacts showed that a doubling of turbidity would reduce seagrass extent by 18% and total leaf area by 21%. Combining climate and water quality scenarios showed that ocean acidification may increase seagrass productivity to offset the negative effects of both thermal stress and declining water quality on the seagrasses growing in St. Joseph Bay. This research highlights the importance of considering multiple limiting factors in understanding the effects of environmental change on seagrass ecosystems

    Providing a Framework for Seagrass Mapping in United States Coastal Ecosystems Using High Spatial Resolution Satellite Imagery

    Get PDF
    Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar\u27s WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems
    corecore